Abstract

AbstractThe constitutive model serves as the foundation for executing structure analysis to obtain the deformation and stress/strain. In this paper, a neural network‐assisted Bayesian parameter identification framework is presented to calibrate parameters of the constitutive model while considering the unavoidable uncertainties. The low‐cycle fatigue test of the CuCrZr alloy at 700 K is first performed to provide realistic data. The posterior distributions are obtained by applying the transitional Markov Chain Monte Carlo method. To accelerate the identification, the neural network is adopted to directly predict the likelihood function value given material parameters. The effect of prior distributions on the identification parameters is also studied. The characteristic parameters of the normal distribution have almost no effect on the identification results. In the absence of prior information, uniform prior distributions can be used to perform Bayesian identification of material parameters, and satisfactory identification parameters can also be acquired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.