Abstract

For computational modeling of biological systems, one of the major challenges is the identification of the model parameters. It is very beneficial to use easily obtained measurements and estimate variables and/or parameters in such systems. For instance, time-series dynamic genomic data can be used to develop models representing dynamic genetic regulatory networks. These models can be used to design intervention strategies such as understanding the biological system behavior and curing major illnesses. The study shown in this paper focuses on the parameter identification of biological phenomena modeled by S-systems using Particle Filter (PF). While the nonlinear observed system is assumed to progress according to a probabilistic state space model, the results show that the PF has good convergence properties. It is concluded that the good convergence is due to PF's ability to deal with highly nonlinear process models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.