Abstract

Inspiraling compact binaries have been identified as one of the most promising sources for gravitational-wave detection. These binaries are always expected to have been circularized by the gravitational radiation when they enter the detector's frequency band. However, recent studies indicate that some binaries may still possess a significant eccentricity. In light of the enhanced post-circular waveform model for eccentric binaries in the frequency domain, we do a systematic study of the possible signal-to-noise ratio loss if one uses quasicircular waveform templates to analyze the eccentric signal, and revisit the problem of parameter estimation of gravitational-wave chirp signals from eccentric compact binaries. We confirm previous results from other researchers that the resulting signal-to-noise ratio loss becomes larger than 5% for eccentricity bigger than 0.1 and the resulting parameter estimation bias is more than 0.1%. We study the parameter estimation accuracy for such a waveform with different initial eccentricities from 0.1 to 0.4 by using the Fisher matrix method. As expected, the eccentricity improves the parameter estimation accuracy significantly by breaking degeneracies between different parameters. Particularly, we find that the eccentricity errors improve by 2 orders of magnitude from ${10}^{\ensuremath{-}2}$ to ${10}^{\ensuremath{-}4}$ when eccentricity grows from 0.1 to 0.4, and the estimated errors of the chirp mass are about ${10}^{\ensuremath{-}3}$ for a binary black hole using the Advanced LIGO detector. For the Einstein Telescope detector, the estimated accuracy of parameters will be 2 orders of magnitude higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.