Abstract

In this paper, we propose a novel representation of F0 contours that provides a computationally efficient algorithm for automatically estimating the parameters of a F0 control model for singing voices. Although the best known F0 control model, based on a second-order system with a piece-wise constant function as its input, can generate F0 contours of natural singing voices, this model has no means of learning the model parameters from observed F0 contours automatically. Therefore, by modeling the piece-wise constant function by Hidden Markov Models (HMM) and approximating the second order differential equation by the difference equation, we estimate model parameters optimally based on iteration of Viterbi training and an LPC-like solver. Our representation is a generative model and can identify both the target musical note sequence and the dynamics of singing behaviors included in the F0 contours. Our experimental results show that the proposed method can separate the dynamics from the target musical note sequence and generate the F0 contours using estimated model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.