Abstract
In the paper, the problem of H-infinity filtering for a class of linear uncertain systems is studied. The parameter uncertainties are assumed to reside in a polytope. The paper is focused on the design of a parameter-dependent filter which guarantees the filtering error system to be asymptotically stable and has a prescribed H-infinity performance. By employing a parameterdependent Lyapunov function approach, sufficient conditions are established for the existence of the desired filters in terms of linear matrix inequalities, which can be handled easily by using the available toolbox. Both continuous- and discrete-time cases are investigated. It is shown, via a numerical example, that the proposed filter design methods are more effective and less conservative than some existing results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.