Abstract

A new, 19 π-delocalized electrons planar Blatter radical building block was developed and used to obtain paramagnetic bent-core liquid crystals. The mesogens were investigated by optical, thermal, powder XRD and DFT methods in the pure form and as binary mixtures. Comparison of their properties with those of the classical Blatter radical analogues revealed that planarization of the central angular element results in a significantly higher stability of the mesophases and increased molecular organization suitable for the formation of ordered banana and columnar mesophases with tighter π-π interactions. These results indicate access to a new, potentially rich class of functional paramagnetic soft materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.