Abstract

The effect of an external inhomogeneous magnetic field on the flow of erythrocytes containing paramagnetic hemoglobin was studied systematically, with three experimental setups. (1) The attraction of a narrow stream of erythrocyte suspension towards stronger magnetic field, in a wide laminar flow, was found to be proportional to the magnetic susceptibility of erythrocytes χ, the product of the field strength and its spatial gradient B × d B/d z, and the reciprocal of flow velocity 1/ v, and also to the hematocrit h of the suspension. (2) A model flow of erythrocyte suspension in the vessel showed a small change in the radial distribution of erythrocytes arising from a magnetic field, which is proportional to χ, B × d d B/d z (up to 20 T 2/m), 1/ v, and h (< 5%). However, the attraction saturates at high values of B × d B/d z and h. (3) Acceleration of the sedimentation rate was detected for paramagnetic erythrocytes in an inhomogeneous magnetic field, but not with diamagnetic erythrocytes. In short, the paramagnetic attraction takes place with venous blood, and depends on the product of the field strength and its spatial gradient, the degree of deoxygenation, the flow velocity, and the hematocrit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.