Abstract

We present the parallelization of a sparse grid finite element discretization of the Black-Scholes equation, which is commonly used for option pricing. Sparse grids allow to handle higher dimensional options than classical approaches on full grids, and can be extended to a fully adaptive discretization method. We introduce the algorithmical structure of efficient algorithms operating on sparse grids, and demonstrate how they can be used to derive an efficient parallelization with OpenMP of the Black-Scholes solver. We show results on different commodity hardware systems based on multi-core architectures with up to 8 cores, and discuss the parallel performance using Intel and AMD CPUs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.