Abstract

AbstractWe consider an individual‐based model for fish schooling, which incorporates a tendency for each fish to align its position and orientation with an appropriate average of its neighbors' positions and orientations, in addition to a tendency for each fish to avoid collisions. To accurately determine the statistical properties of the collective motion of fish whose dynamics are described by such a model, many realizations are typically required. This carries a very high computational cost. The current generation of graphics processing units is well suited to this task. We describe our implementation and present computational experiments illustrating the power of this technology for this important and challenging class of problems. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.