Abstract

Exploiting the unique attributes of nanometer-scale optical near-field interactions in a completely parallel manner is important for innovative nanometric optical processing systems. In this paper, we propose the basic concepts necessary for parallel retrieval of light–matter interactions on the nanometer-scale instead of the conventional one-dimensional scanning method. One is the macro-scale observation of optical near-fields, and the other is the transcription of optical near-fields. The former converts effects occurring locally on the nanometer scale involving optical near-field interactions to propagating light radiation, and the latter magnifies the distributions of optical near-fields from the nanometer scale to the sub-micrometer one. Those techniques allow us to observe optical far-field signals that originate from the effects occurring at the nanometer scale. We numerically verified the concepts and principles using electromagnetic simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.