Abstract

In this paper we show how to completely and exactly decompose the optimal Kalman filter of stochastic systems in multimodeling form in terms of one pure-slow and two pure-fast, reduced-order, independent, Kalman filters. The reduced-order Kalman filters are all driven by the system measurements. This leads to a parallel Kalman filtering scheme and removes ill-conditioning of the original full-order singularly perturbed Kalman filter. The results obtained are valid for steady state. In that direction, the corresponding algebraic filter Riccati equation is completely decoupled and solved in terms of one pure-slow and two pure fast, reduced-order, independent, algebraic Riccati equations. A nonsingular state transformation that exactly relates the state variables in the original and new coordinates (in which the required decomposition is achieved) is also established. The eighth order model of a passenger car under road disturbances is used to demonstrate efficiency of the proposed filtering technique. [S0022-0434(00)01703-2]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.