Abstract
This paper deals with solving stiff systems of differential equations by implicit Multistep Runge-Kutta (MRK) methods. For this type of methods, nonlinear systems of dimension sd arise, where s is the number of Runge-Kutta stages and d the dimension of the problem. Applying a Newton process leads to linear systems of the same dimension, which can be very expensive to solve in practice. With a parallel iterative linear system solver, especially designed for MRK methods, we approximate these linear systems by s systems of dimension d, which can be solved in parallel on a computer with s processors. In terms of Jacobian evaluations and LU-decompositions, the k-step s-stage MRK applied with this technique is on s processors equally expensive as the widely used k-step Backward Differentiation Formula on 1 processor, whereas the stability properties are better than that of BDF. A simple implementation of both methods shows that, for the same number of Newton iterations, the accuracy delivered by the new method is higher than that of BDF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.