Abstract

Homotopy methods to solve polynomial systems are well suited for parallel computing because the solution paths defined by the homotopy can be tracked independently. For sparse polynomial systems, polyhedral methods give efficient homotopy algorithms. The polyhedral homotopy methods run in three stages: (1) compute the mixed volume; (2) solve a random coefficient start system; (3) track solution paths to solve the target system. This paper is about how to parallelize the second stage in PHCpack. We use a static workload distribution algorithm and achieve a good speedup on the cyclic n-roots benchmark systems. Dynamic workload balancing leads to reduced wall times on large polynomial systems which arise in mechanism design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.