Abstract

Abstract. Extended morphological profile (EMP) is a good technique for extracting spectral-spatial information from the images but large size of hyperspectral images is an important concern for creating EMPs. However, with the availability of modern multi-core processors and commodity parallel processing systems like graphics processing units (GPUs) at desktop level, parallel computing provides a viable option to significantly accelerate execution of such computations. In this paper, parallel implementation of an EMP based spectralspatial classification method for hyperspectral imagery is presented. The parallel implementation is done both on multi-core CPU and GPU. The impact of parallelization on speed up and classification accuracy is analyzed. For GPU, the implementation is done in compute unified device architecture (CUDA) C. The experiments are carried out on two well-known hyperspectral images. It is observed from the experimental results that GPU implementation provides a speed up of about 7 times, while parallel implementation on multi-core CPU resulted in speed up of about 3 times. It is also observed that parallel implementation has no adverse impact on the classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.