Abstract

Domain decomposition by nested dissection for concurrent factorization and storage (CFS) of asymmetric matrices is coupled with finite element and spectral element discretizations and with Newton's method to yield an algorithm for parallel solution of nonlinear initial-and boundary-value problem. The efficiency of the CFS algorithm implemented on a MIMD computer is demonstrated by analysis of the solution of the two-dimensional, Poisson equation discretized using both finite and spectral elements. Computation rates and speedups for the LU-decomposition algorithm, which is the most time consuming portion of the solution algorithm, scale with the number of processors. The spectral element discretization with high-order interpolating polynomials yields especially high speedups because the ratio of communication to computation is lower than for low-order finite element discretizations. The robustness of the parallel implementation of the finite-element/Newton algorithm is demonstrated by solution of steady and transient natural convection in a two-dimensional cavity, a standard test problem for low Prandtl number convection. Time integration is performed using a fully implicit algorithm with a modified Newton's method for solution of nonlinear equations at each time step. The efficiency of the CFS version of the finite-element/Newton algorithm compares well with a spectral element algorithm implemented on a MIMD computer using iterative matrix methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.