Abstract

Abstract. The development of autonomous Unmanned Aerial Vehicles (UAVs) is a priority to many civilian and military organizations. An essential aspect of UAV autonomy is the ability for automatic trajectory planning. In this paper, we use a parallel Flower Pollination Algorithm (FPA) to deal with the problem's complexity and compute feasible and quasi-optimal trajectories for fixed-wing UAVs in complex 3D environments, taking into account the vehicle's flight properties. The global optimization algorithm is improved with the addition of 2-opt local search providing a significant improvement. The proposed trajectory planner in implemented and parallelized on a multicore processor (CPU) using OpenMP and a Graphics Processing Unit (GPU) using CUDA resulting in a 9.6x and a 68.5x speedup respectively compared to the sequential implementation on CPU. Index Terms—Flower Pollination Algorithm, Graphics Processing Unit, Parallel Programming, Trajectory Planning, Unmanned Aerial Vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.