Abstract

A code that solves the coupled electron drift kinetic and temperature equations has been written to study the effects of collisionality and particle trapping on temperature equilibration along magnetic field lines. A Chapman-Enskog-like approach is adopted with the time-dependent distribution function written as the sum of a dynamic Maxwellian and a kinetic distortion expanded in Legendre polynomials. The drift kinetic equation is solved on a discrete grid in normalized speed, and an FFT algorithm is used to treat the onedimensional spatial domain along the magnetic field. The dependence of the steady-state temperature on collisionality and magnetic well depths is discussed in detail. As collisionality decreases (increasing background temperature), temperature variations decrease. As magnetic well depth increases (at fixed collisionality), temperature variations along the field line increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.