Abstract
We use a parallel frequency-domain optical coherence tomography (FDOCT) system to generate a scatter-mode image of the hamster cheek pouch epithelium. To our knowledge, this is the first optical coherence tomography (OCT) image of a biological sample obtained using a thermal light source in the frequency domain. The system employs an imaging spectrometer to acquire depth-resolved profiles from adjacent spatial points without the need for any scanning. To enable this imaging modality, we have considered that signals originating from multiple depths combine in a different manner in FDOCT compared to time-domain optical coherence tomography (TDOCT). Because a multicomponent FDOCT signal is a coherent sum, it is necessary to limit the number of modes that contribute to the detected signal. Conversely, multicomponent TDOCT signals can be represented as incoherent sums, where increasing the number of modes improves the signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.