Abstract
In this paper, several domain decomposition algorithms are considered to solve parallelly non-steady diffusion equations. The contributions of this work are threefold. The first one is that we present effective parallel domain decomposition schemes underlying the classical and monotone finite volume element discretization. These schemes adopt a three-stage technique, which is also used in the difference method and the finite volume method. Positivity of the parallel scheme based on monotone finite volume element method is proved. The second one is that we propose a new domain decomposition computational strategy to improve the correction step in prediction-correction frame such that the whole parallel process is simplified. The third one is that we consider a parallel algorithm build on quadratic finite volume element method, which preserves local conservation and has higher convergence rates. These parallel schemes are of intrinsic parallelism since we apply the prediction-correction technique to the interface of subdomains coming from an artificial division of computational domain or multi-medium physical domain. The proposed parallel schemes need only local communication among neighboring processors. Numerical results are presented to illuminate the accuracy, stability and parallelism of the parallel schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.