Abstract
Polymorphic Torus is a novel interconnection network for SIMD massively parallel computers, able to support effectively both local and global communication. Thanks to this characteristic, Polymorphic Torus is highly suitable for computer vision applications, since vision involves local communication at the low-level stage and global communication at the intermediate- and high-level stages. In this paper we evaluate the performance of Polymorphic Torus in the computer vision domain. We consider a set of basic vision tasks, namely,convolution, histogramming, connected component labeling, Hough transform, extreme point identification, diameter computation, andvisibility, and show how they can take advantage of the Polymorphic Torus communication capabilities. For each basic vision task we propose a Polymorphic Torus parallel algorithm, give its computational complexity, and compare such a complexity with the complexity of the same task inmesh, tree, pyramid, and hypercube interconnection networks. In spite of the fact that Polymorphic Torus has the same wiring complexity as mesh, the comparison shows that in all of the vision tasks under examination it achieves complexity lower than or at most equal to hypercube, which is the most powerful among the interconnection networks considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.