Abstract

Solving optimization problems with parallel algorithms has a long tradition in OR. Its future relevance for solving hard optimization problems in many fields, including finance, logistics, production and design, is leveraged through the increasing availability of powerful computing capabilities. Acknowledging the existence of several literature reviews on parallel optimization, we did not find reviews that cover the most recent literature on the parallelization of both exact and (meta)heuristic methods. However, in the past decade substantial advancements in parallel computing capabilities have been achieved and used by OR scholars so that an overview of modern parallel optimization in OR that accounts for these advancements is beneficial. Another issue from previous reviews results from their adoption of different foci so that concepts used to describe and structure prior literature differ. This heterogeneity is accompanied by a lack of unifying frameworks for parallel optimization across methodologies, application fields and problems, and it has finally led to an overall fragmented picture of what has been achieved and still needs to be done in parallel optimization in OR. This review addresses the aforementioned issues with three contributions: First, we suggest a new integrative framework of parallel computational optimization across optimization problems, algorithms and application domains. The framework integrates the perspectives of algorithmic design and computational implementation of parallel optimization. Second, we apply the framework to synthesize prior research on parallel optimization in OR, focusing on computational studies published in the period 2008–2017. Finally, we suggest research directions for parallel optimization in OR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.