Abstract
Parallel application performance models provide valuable insight about the performance in real systems. Capable tools providing fast, accurate, and comprehensive prediction and evaluation of high-performance computing (HPC) applications and system architectures have important value. This paper presents PyPassT, an analysis based modeling framework built on static program analysis and integrated simulation of the target HPC architectures. More specifically, the framework analyzes application source code written in C with OpenACC directives and transforms it into an application model describing its computation and communication behavior (including CPU and GPU workloads, memory accesses, and message-passing transactions). The application model is then executed on a simulated HPC architecture for performance analysis. Preliminary experiments demonstrate that the proposed framework can represent the runtime behavior of benchmark applications with good accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.