Abstract

This paper documents aspects of the development of a logic programming paradigm with implicit control, based in a compartmentalized connection graph theorem prover. Whilst the research has as it main goal the development of a language in which programs can be written with much less explicit control than PROLOG and its existing successors, a secondary goal is to exploit the immense parallelism inherent in the connection graph. This is what is in focus in this presentation.We focus initially on analysis of the extent of the parallelism inherent in the proof procedure. We characterize six different forms of parallelism These various forms of parallelism can be further classified into two classes: those associated with the performance of resolution steps, and those which are more concerned with unification.Unification is thus also a major topic of this report, and is identified as a major source of the cost of executing a logic program or proving a theorem. It turns out that deferring unification is the one of the best ways of dealing with it: hashing to perform it, and indexing to avoid it.Indexing and hashing, therefore, are our third topic.KeywordsHash FunctionLogic ProgramLogic ProgrammingHash TableHorn ClauseThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.