Abstract
Efficient parallel iterative algorithm is investigated for solving block-tridiagonal linear systems on distributed-memory multi-computers. Based on Galerkin theory, the communication only need twice between the adjacent processors per iteration step. Furthermore, the condition for convergence is given when the coefficient matrix A is a symmetric positive definite matrix. Numerical experiments implemented on the cluster verify that our algorithm parallel acceleration rates and efficiency are higher than the multisplitting one, and has the advantages over the multisplitting method of high efficiency and low memory space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.