Abstract

NAD(P) +-dependent aldehyde dehydrogenase (EC 1.2.1.5) and aspartase (EC 4.3.1.1) in the cells of an atypical psychrophile from Antarctic seawater, Cytophaga sp. KUC-1, were paradoxically thermostable, although they derived from a psychrophile. Both enzymes showed the highest activity at about 55 °C, and also active even under cold conditions. The enzymes contained more Ile residues than the enzymes from mesophiles. The Ile/Ile + Val + Leu ratio of the Cytophaga thermostable enzymes was much higher than that of the enzymes from mesophiles. As compared with the enzymes from other microorganisms, the Cytophaga thermostable enzymes have the structural differences in the C-terminal region of the enzymes. Therefore, the C-terminal region might be important for the paradoxical thermostability of the enzymes. The psychrophilic microorganism produces not only psychrophilic enzyme, but thermostable enzyme with psychrophilicity. Therefore, the psychrophilic microorganism is one of the candidates for isolation of novel biocatalysts, which have potential for various industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.