Abstract

The classical game theoretic resolutions to Selten's Chain Store game are unsatisfactory; they either alter the game to avoid the paradox or struggle to organize the existing experimental data. This paper applies co-evolutionary algorithms to the Chain Store game and demonstrates that the resulting system's dynamics are neither intuitively paradoxical nor contradicted by the existing experimental data. Specifically, some parameterizations of evolutionary algorithms promote genetic drift. Such drift can lead the system to transition among the game's various Nash Equilibria. This has implications for policy makers as well as for computational modelers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.