Abstract

The study investigated the kinetics of p-nitrophenol hydroxylase (PNPH) in hepatic microsomes obtained from Atlantic salmon (Salmo salar). The selective inhibitors for some major mammalian cytochrome P450 (CYP450) were used to investigate the potential inhibitory effect on enzymes involved in p-nitrophenol hydroxylation. The following inhibitors were used: α-naphtoflavone (CYP1A), ellipticine (CYP1A1), furafylline (CYP1A2), 8-methoxypsoralen (8MOP, CYP2A6), 4-methylpyrazole (4MP, CYP2A6/2E1), diallyl sulfide (DAS, CYP2E1), and ketoconazole (CYP3A4). Additionally, the natural steroids 17-beta-oestraiol (E2) and testosterone were investigated as potential inhibitors of PNPH activity. It was found that formation of 4-nitrocatechol from p-nitrophenol followed monophasic kinetics with K(m) = 0.17 ± 0.03 mM and V(max) = 21.8 ± 1.05 pmol/min/mg. PNPH activity was competitively inhibited by diallyle sulfide with the K(i) value of 285.1 ± 94.2 μM μM and uncompetitively by ellipticine with K(i) value of 65.7 ± 7.8 μM. Moreover, E2 showed an ability to reduce PNPH activity through the mechanism-based inhibition mode. Our results suggest that hepatic microsomes from Atlantic salmon possess CYP2E1-like activity. However, specific isoform-mediated PNPH activity should be identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.