Abstract
Surface-enhanced Raman scattering (SERS) fingerprints of individual molecules offer the possibility of multiplexing as well as cancer screening. A highly sensitive, noninvasive, and rapid cancer screening platform encompassing exfoliative cytology and paper-based SERS technology is described. The SERS substrate which consists of plasmonic gold nanorods (GNRs) adsorbed on a piece of filter paper forms the flexible and three-dimensional heterogeneous scaffold for cancer screening. Different and reproducible SERS spectra are obtained from normal and cancerous cells due to specific biomolecular changes in cancerous cells. A diagnostic algorithm based on the ratio of the spectra values is adopted to distinguish between cells exfoliated from 20 normal and cancerous tissues, and a high sensitivity of 100% and specificity of 100% are achieved by I1600/1440 (peak ratio of signals at 1600–1440cm−1) and I1440/1340 (1440–1340cm−1), which is better than I1600/1340 (1600–1340cm−1) with a sensitivity of 70% and specificity of 60%. The combination of exfoliative cytology and paper-based plasmonic technology enables highly sensitive, rapid, and non-invasive cancer screening and has large clinical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.