Abstract
Paper supports were used to develop a simple, inexpensive, fast and sensitive electrochemical immunosensor for the analysis of antibiotic residues in milk samples, where single-walled carbon nanotubes (SWNTs) and a simple dip–dry coating method were employed to prepare the highly sensitive biosensor. Well-dispersed SWNTs were impregnated with an antibody against neomycin to obtain a composite coating solution, followed by dipping the filtration paper in the solution to fabricate the sensitive biosensor which had high electrical conductivity. Based on the impedance change in the entire paper supported biosensor with increased concentrations of neomycin, the limit detection of the optimized method was 0.04ngmL−1 and a linear detection range from 0.2 to 125ngmL−1, well below the European Union regulations for neomycin in this matrix. This paper supported biosensor was applied to determine neomycin in milk samples after a simple sample treatment, with spiked recoveries which ranged from 93.25 to 110.47%. A variety of antibiotic residues in milk samples could be determined following similar sensor preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.