Abstract

In this work, a facile methodology is discussed, involving fluoro‐silanization followed by oxygen plasma etching, for the fabrication of surfaces with extreme wettabilities, i.e., surfaces that display all four possible combinations of wettabilities with water and different oils: hydrophobic–oleophilic, hydrophilic–oleophobic, omniphobic, and omniphilic. Open‐channel, paper‐based microfluidic devices fabricated using these surfaces with extreme wettabilities allow for the localization, manipulation, and transport of virtually all high‐ and low‐surface tension liquids. This in turn expands the utility of paper‐based microfluidic devices to a range of applications never before considered. These include, as demonstrated here, continuous oil–water separation, liquid–liquid extraction, open‐channel microfluidic emulsification, microparticle fabrication, and precise measurement of mixtures' composition. Finally, the biocompatibility of the developed microfluidic devices and their utility for cell patterning are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.