Abstract

In this paper we consider a distributed convex optimization problem over time-varying networks. We propose a dual method that converges R-linearly to the optimal point given that the agents' objective functions are strongly convex and have Lipschitz continuous gradients. The proposed method requires half the amount of variable exchanges per iteration than methods based on DIGing, and yields improved practical performance as empirically demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.