Abstract
Ischemia-reperfusion of the intestine produces a set of inflammatory mediators, the origin of which has recently been shown to involve pancreatic digestive enzymes. Matrix metalloproteinase-9 (MMP-9) participates in a variety of inflammatory processes including myocardial, hepatic, and pancreatic ischemia-reperfusion. In the present study, we explore the role of neutrophil-derived MMP-9 in acute intestinal ischemia-reperfusion and its interaction with pancreatic trypsin. Male Sprague-Dawley rats were subjected to 45 minutes of superior mesenteric arterial occlusion followed by 90 minutes of reperfusion. In situ zymography of the proximal jejunum reveals increased gelatinase activity in the intestinal wall after ischemia-reperfusion. Gel electrophoresis zymography and immunofluorescence co-localization suggests that this gelatinase activity is derived from MMP-9 released from infiltrating neutrophils. The role of intraluminal trypsin in this process was investigated using an in vivo isolated jejunal loop model of intestinal ischemia-reperfusion. Trypsin increased the inflammatory response after reperfusion, with an augmented neutrophil infiltration of the intestinal wall. Furthermore, trypsin stimulated a rapid conversion of neutrophil-released proMMP-9 into the lower molecular weight enzymatically active MMP-9. This process represents a powerful in vivo pathophysiological mechanism for trypsin-induced MMP-9 activation and is likely to play a central role in the development of acute intestinal inflammation and shock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.