Abstract

In this work, differently prepared palladium films are tested toward their hydrogen sensing properties in aqueous electrolytes. The Pd thin films were either electroless deposited, electrochemically deposited, or prepared by physical vapor deposition. The outcome of each fabrication process and characteristics of the Pd films were determined by means of SEM and cyclic voltammetry. Electrochemical impedance spectroscopy was performed in order to calibrate the prepared hydrogen sensors. The Pd films react on different hydrogen concentrations in the electrolyte by changing their electrical resistivity. Elemental hydrogen can diffuse into the Pd film leading to a lattice expansion and a phase transition. A second hydrogen sensing mechanism due to a change in charge transfer resistance can be observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.