Abstract

We report a one-pot surfactant-free wet-chemical reduction approach to the synthesis of palladium/titanium nitride (Pd/TiN) and Pd/carbon (Pd/C) composites, in which ∼5 nm Pd NPs were uniformly dispersed on TiN or C. In terms of catalytic performance, Pd/TiN showed enhanced efficiency and stability compared with those of Pd/C and bare TiN in the electrocatalytic hydrodechlorination (EHDC) reaction of 2,4-dichlorophenol (2,4-DCP) in aqueous solution. The superior performance of Pd/TiN arises from the promotion effect of TiN. Strong metal-support interactions modified the electronic structure of Pd, which optimized generation of H*ads and 2,4-DCP adsorption/activation. The cathode potential plays a vital role in controlling the EHDC efficiency and the product distribution. A working potential of –0.80 V was shown to be optimal for achieving the highest EHDC efficiency and maximizing conversion of 2,4-DCP to phenol (P). Our studies of the reaction pathway show that EHDC of 2,4-DCP on Pd/TiN proceeded by 2,4-DCP→p-chlorophenol (p-CP), o-chlorophenol (o-CP)→P; however, Pd/TiN presented little selectivity for cleavage of p-C-Cl vs o-C-Cl. This work presents a new approach to enhancing Pd performance towards EHDC through the effects of a support. The strategy demonstrated here could also be extended to design highly efficient catalysts for other hydrogenation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.