Abstract

Reactions of the monoterpenes β-pinene, limonene and myrcene with Pd(II) complexes in acetic acid solutions were studied by 1H NMR spectroscopy. Various π-allyl palladium complexes were detected in situ and their interaction with CuCl 2 has been investigated. The results clarify the mechanism of allylic oxidation of these substrates mediated by Pd(II)/Cu(II)-based catalytic systems. Originally introduced to regenerate reduced palladium species, CuCl 2 has been shown to play an important role in the formation and/or decomposition of key reaction intermediates – π-allyl palladium complexes. β-Pinene and myrcene readily react with Pd(OAc) 2 giving corresponding π-allyls, with two complexes acyclic and cyclic being formed from myrcene. On the other hand, the formation of π-allyl complexes from limonene occurs at a significant rate only in the presence of CuCl 2. NMR observations, including selective paramagnetic enhancement of spin-lattice relaxation, indicate that π-allyl palladium intermediates specifically interact with Cu(II) ions in the reaction solutions. Such interaction probably involves Cu(II) bonding to Pd(II) via bridging ligands, and seems to be responsible for the accelerative effect of CuCl 2 in the palladium catalyzed oxidation of the monoterpenes. Indeed, most of these reactions do not occur at all in the absence of CuCl 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.