Abstract

p21-activated kinases (PAKs) are multifunctional effectors of Rho GTPases, which are associated with cytoskeletal organization, cellular morphogenesis, migration and survival. PAKs are overactive in a number of tumor tissues and have attracted attention as a potential target for cancer therapy. In the present study, PAK5 levels were analyzed in primary osteosarcoma (OS) samples (n=65) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) methods. In the primary OS tissue, increased PAK5 expression (IHC score >2, n=37) was associated with significantly decreased overall survival (P=0.036) compared with decreased PAK5 expression (IHC score ≤2, n=28). PAK5 expression was identified to be significantly associated with metastasis (P=0.010). The lung is the most common metastasis site for OS. In addition, the level of PAK5 in lung metastasis tissue (n=13) was detected using RT-qPCR and IHC methods. PAK5 expression was increased in lung metastasis tissue compared with in primary OS samples. PAK5 was silenced using short hairpin RNA in OS cell lines. Wound healing, migration and nude mice model assay results consistently demonstrated that PAK5 knockdown was able to significantly inhibit OS migration. In PAK5-knockdown cells, the alteration in the expression of a number of metastasis-associated factors, including epithelial cadherin, vimentin, fibronectin and matrix metalloproteinase 2 (MMP2), was analyzed. Only MMP2 expression was decreased significantly (P<0.05). The expression level of MMP2 was analyzed in primary OS tissue and lung metastasis tissue using RT-qPCR and IHC methods. Expression of MMP2 was identified to be associated with expression of PAK5. The results of the present study suggest that PAK5 promotes OS cell migration and that PAK5 expression may be used to predict lung metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.