Abstract
Paired associative stimulation (PAS) has been explored in humans as a noninvasive tool to drive plasticity and promote recovery after neurologic insult. A more thorough understanding of PAS-induced plasticity is needed to fully harness it as a clinical tool. Here, we tested the efficacy of PAS with multiple interstimulus intervals in an awake rat model to study the principles of associative plasticity. Using chronically implanted electrodes in motor cortex and forelimb, we explored PAS parameters to effectively drive plasticity. We assessed changes in corticomotor excitability using a closed-loop, EMG-controlled cortical stimulation paradigm. We tested 11 PAS intervals, chosen to force the coincidence of neuronal activity in the motor cortex and spinal cord of rats with timings relevant to the principles of Hebbian spike timing-dependent plasticity. However, despite a relatively large number of stimulus pairings (300), none of the tested intervals reliably changed corticospinal excitability relative to control conditions. Our results question PAS effectiveness under these conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.