Abstract
The short-range behavior of the pair correlation function in a dense onecomponent plasma (jellium) is investigated. As an intermediate step, the short-range behavior of the classical pair correlation function is obtained. Actually, although the temperature and the density are assumed to be such that the thermodynamic properties are almost classical, quantum mechanics (tunnel effect) always dominates the pair correlation function at short distances. The quantum pair correlation function is calculated by treating the many-body quantum effects by a perturbation theory, and by using a semiclassical approximation based on path integrals. The results are applied to the computation of the nuclear reaction rate in dense stellar matter (pycnonuclear reactions).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.