Abstract

Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical models, which combine the distributional flexibility of pair-copula constructions (PCCs) with the parsimony of conditional independence models associated with directed acyclic graphs (DAGs). We are first to provide generic algorithms for random sampling and likelihood inference in arbitrary PCBNs as well as for selecting orderings of the parents of the vertices in the underlying graphs. Model selection of the DAG is facilitated using a version of the well-known PC algorithm that is based on a novel test for conditional independence of random variables tailored to the PCC framework. A simulation study shows the PC algorithm’s high aptitude for structure estimation in non-Gaussian PCBNs. The proposed methods are finally applied to modeling financial return data. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.