Abstract

Pain influences both motor behavior and neuroplastic adaptations induced by physical training. Motor imagery (MI) is a promising method to recover motor functions, for instance in clinical populations with limited endurance or concomitant pain. However, the influence of pain on the MI processes is not well established. This study investigated whether acute experimental pain could modulate corticospinal excitability assessed at rest and during MI (Exp. 1) and limit the use-dependent plasticity induced by MI practice (Exp. 2). Participants imagined thumb movements without pain or with painful electrical stimulations applied either on digit V or over the knee. We used transcranial magnetic stimulation to measure corticospinal excitability at rest and during MI (Exp. 1) and to evoke involuntary thumb movements before and after MI practice (Exp. 2). Regardless of its location, pain prevented the increase of corticospinal excitability that is classically observed during MI. In addition, pain blocked use-dependent plasticity following MI practice, as testified by a lack of significant posttraining deviations. These findings suggest that pain interferes with MI processes, preventing the corticospinal excitability facilitation needed to induce use-dependent plasticity. Pain should be carefully considered for rehabilitation programs using MI to restore motor function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.