Abstract

Structural information related to protein–peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein–peptide interactions explored by experimental ways. Protein–peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein–peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein–peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.

Highlights

  • Peptide-mediated interactions with proteins are important to the physiological functions of living cells [1]

  • Dataset and evaluation criteria In this study, we developed a parallel peptide docking method based on abFlexPepDock [7] for ab-initio docking with a receptor that contains flexible areas

  • The four main procedures used for low-resolution docking were combined in parallel

Read more

Summary

Introduction

Peptide-mediated interactions with proteins are important to the physiological functions of living cells [1]. Structural information related to protein-peptide complexes is a rich resource for drug discovery and design [2]. There is an increasing capacity for obtaining experimental-determined structural information about protein-peptide complexes, but there is still a large gap between the requirements of pharmaceutical applications and the solved experimental structures. Many papers based on physical or physical-chemical computational protein-peptide docking methods have been published. The scoring problems and search problems are two basic and important considerations for understanding protein-peptide docking [3]. The problem of flexibility is an un-solved problem for conventional protein docking algorithms [4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.