Abstract
BackgroundMacrophages in other organs (e.g. kidneys, lungs, and spleen, et. al) have rarely been reported in the development of liver fibrosis. Therefore, it is important to investigate macrophage activation in the main organs in liver fibrosis. We investigated the potential antifibrogenic effects of paeoniflorin (PF) in a dimethylnitrosamine (DMN)-induced rat model with special focus on inhibiting macrophage activation in the main organs.MethodsRat hepatic fibrosis was induced by treatment with DMN three times weekly over a 4-week period. DMN rats were treated with water, PF, or gadolinium chloride (GdCl3) from the beginning of the 3rd week. The expression of CD68, marker of macrophage, was investigated using immunohistochemical, real-time PCR, and western blot analysis.ResultsHepatic hydroxyproline content markedly decreased and histopathology improved in the DMN-PF rats. Expression of desmin and collagen 1 decreased notably in DMN-PF liver. CD68 expression in the liver, spleen and kidney increased markedly after 2 weeks but decreased in DMN-water rats. PF and GdCl3 decreased CD68 expression in the liver and spleen and there was no effect on kidney. CD68 expression in the lung increased gradually during the course of DMN-induced liver fibrosis, and PF inhibited CD68 expression in the lung significantly while GdCl3 increased CD68 markedly. Expression of tumor necrosis factor (TNF-α) was decreased significantly by GdCl3 in the liver, as revealed by real-time PCR analysis. However, GdCl3 could not decrease TNF-α level in the serum by enzyme linked immunosorbent assay (ELISA).ConclusionsMacrophage activation was disrupted in the liver, spleen, lung and kidney during development of DMN-induced liver fibrosis. PF administration attenuated DMN-induced liver fibrosis at least in part by regulating macrophage disruption in the main organs.
Highlights
Macrophages in other organs have rarely been reported in the development of liver fibrosis
To investigate the mechanism by which PF acts on liver injury, we investigated the potential antifibrogenic effects of PF in an experimental liver fibrosis rat model, with a special focus on the mechanisms regulating macrophage activation in the liver, spleen, kidneys and lungs
Compared with 4-week normal rats, body, liver, heart and kidney weights decreased significantly in the 4-week DMN-water group (p
Summary
Macrophages in other organs (e.g. kidneys, lungs, and spleen, et al) have rarely been reported in the development of liver fibrosis. It is important to investigate macrophage activation in the main organs in liver fibrosis. We investigated the potential antifibrogenic effects of paeoniflorin (PF) in a dimethylnitrosamine (DMN)-induced rat model with special focus on inhibiting macrophage activation in the main organs. PF has been shown to attenuate the contraction induced by veratrine in isolated atria and aorta of rats [11]. It can inhibit nuclear factor κB activity of SGC-7901 cells, and enhance 5-fluorouracilinduced apoptosis of gastric carcinoma cells in a timeand dose-dependent manner [12,13]. Little is known about the effects of PF on macrophages in the main organs during the development of liver fibrosis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.