Abstract

To analyse and predict the healing time of upper limb fractures in children, machine learning algorithms were used. Paediatric orthopaedic data was obtained from the University Malaya Medical Centre. The data set includes radiographs of upper limb fractures involving the radius, ulna, and humerus in children under the age of twelve, with ages recorded from the date and time of initial injury. Inputs assessment included: age, gender, bone type, the number of bones involved, fracture type, angulation and the distance of the fracture. Random Forest (RF) and Support Vector Regression (SVR) algorithms were used to predict and identify variables associated with fracture healing time. Self Organizing Maps was then used for visualization and ordination of factors associated with healing time. Algorithms performance was measured using root mean square error (RMSE). A significant determinant in fracture healing includes age, bone part, fracture angulation, and distance. The Wilcoxon signed ranked test reported there is a significant difference between the prediction result of the SVR model (RMSE = 2.56) and the RF model (RMSE = 2.66). Predicting healing time can be used in the treatment process and follow up period for general practitioners and medical officers. The algorithm is deployed online at https://kidsfractureexpert.com/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.