Abstract

Gastroenteric cancer is one of the most prevalent cancers and is responsible for most cancer-related deaths worldwide. Paclitaxel (PTX), a classical microtubule inhibitor, is indicated in the treatment of gastric/gastroenteric cancers. In the present study, trimethyl chitosan (TMC)-loaded PTX (TMC-PTX) was prepared and evaluated for its therapeutic effect in gastric cancers. A spherical shaped nanosized TMC-PTX particle was formed with high loading capacity (~30%) for PTX. The nanoparticles (NPs) showed a sustained release pattern (~70%) for up to 96h of study period. The positively charged NPs were preferentially internalized by Caco-2 cells. TMC-PTX inhibited the gastric cell proliferation with an IC50 value of 0.6µg in NCI-N87 cells while it was 1.26µg in the SGC-7901 cell line after 24h exposure. The apoptosis assay (AnnexinV/PI) showed a large presence of cells in the early and late apoptosis chamber, while cell cycle analysis showed a marked G2/M phase arrest (50-60%) in NCI-N87 and SGC-7901 cell lines indicating its potent anti-proliferative effect. The invivo antitumor study in NCI-N87 and SGC-7901 bearing xenograft model showed a superior chemotherapeutic efficacy for TMC-PTX NP. The NP group significantly reduced the tumor growth with no obvious sign of systemic side-effects (safety). Collectively, our results suggest that the microtubule inhibitory effect of PTX-loaded polymer NP could be a promising system for the treatment of gastroenteric cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.