Abstract
This paper addresses the NP hard optimization problem of packing identical spheres of unit radii into the smallest sphere (PSS). It models PSS as a non-linear program (NLP) and approximately solves it using a hybrid heuristic which couples a variable neighborhood search (VNS) with a local search (LS). VNS serves as the diversification mechanism whereas LS acts as the intensification one. VNS investigates the neighborhood of a feasible local minimum u in search for the global minimum, where neighboring solutions are obtained by shaking one or more spheres of u and the size of the neighborhood is varied by changing the number of shaken spheres, the distance and the direction each sphere is moved. LS intensifies the search around a solution u by subjecting its neighbors to a sequential quadratic algorithm with non-monotone line search (as the NLP solver). The computational investigation highlights the role of LS and VNS in identifying (near) global optima, studies their sensitivity to initial solutions, and shows that the proposed hybrid heuristic provides more precise results than existing approaches. Most importantly, it provides computational evidence that the multiple-start strategy of non-linear programming solvers is not sufficient to solve PSS. Finally, it gives new upper bounds for 29 out of 48 benchmark instances of PSS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.