Abstract

Decreased proteasome activity is an important pathology in Parkinson's disease (PD), which is related to cell death and Lewy body formation. In this study, we show that p53-activity may correlate with neuronal death via the mitochondrial pathway in PD model. The proteasome inhibitor, MG132, induced the accumulation of p53 in human dopaminergic neuroblastoma SH-SY5Y cells. The increased stabilization of p53 upregulated the level of Bax and mitochondrial depolarization. These events were inhibited by the p53 inhibitor, pifithrin-α (PFT). Cell viability analyzes demonstrated that PFT partially prevented MG132-induced cell death. These results suggest that p53 is a candidate as an intermediary between the proteasome system and mitochondria-related neuronal death in PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.