Abstract

Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells is a pathological process that occurs during peritoneal dialysis. EMT leads to peritoneal fibrosis, ultrafiltration failure and eventually to the discontinuation of therapy. Signaling pathways involved in mesothelial EMT are thus of great interest, but are mostly unknown. We used primary mesothelial cells from human omentum to analyze the role of the p38 MAPK signaling pathway in the induction of EMT. The use of specific inhibitors, a dominant-negative p38 mutant and lentiviral silencing of p38α demonstrated that p38 promotes E-cadherin expression both in untreated cells and in cells co-stimulated with the EMT-inducing stimuli transforming growth factor (TGF)-β1 and interleukin (IL)-1β. p38 inhibition also led to disorganization and downregulation of cytokeratin filaments and zonula occludens (ZO)-1, whereas expression of vimentin was increased. Analysis of transcription factors that repress E-cadherin expression showed that p38 blockade inhibited expression of Snail1 while increasing expression of Twist. Nuclear translocation and transcriptional activity of p65 NF-κB, an important inducer of EMT, was increased by p38 inhibition. Moreover, p38 inhibition increased the phosphorylation of TGF-β-activated kinase 1 (TAK1), NF-κB and IκBα. The effect of p38 inhibition on E-cadherin expression was rescued by modulating the TAK1-NF-κB pathway. Our results demonstrate that p38 maintains E-cadherin expression by suppressing TAK1-NF-κB signaling, thus impeding the induction of EMT in human primary mesothelial cells. This represents a novel role of p38 as a brake or 'gatekeeper' of EMT induction by maintaining E-cadherin levels.

Highlights

  • Epithelial-to-mesenchymal transition (EMT) is a complex, stepwise phenomenon that occurs during embryonic development and tumor progression (Thiery et al, 2009), and is associated with chronic inflammatory and fibrogenic diseases affecting lung, liver and the peritoneum of patients undergoing peritoneal dialysis (Kalluri and Weinberg, 2009; Aroeira et al, 2007)

  • Summary Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells is a pathological process that occurs during peritoneal dialysis

  • We used primary mesothelial cells from human omentum to analyze the role of the p38 mitogen-activated protein kinases (MAPKs) signaling pathway in the induction of EMT

Read more

Summary

Introduction

EMT is a complex, stepwise phenomenon that occurs during embryonic development and tumor progression (Thiery et al, 2009), and is associated with chronic inflammatory and fibrogenic diseases affecting lung, liver and the peritoneum of patients undergoing peritoneal dialysis (Kalluri and Weinberg, 2009; Aroeira et al, 2007). Our previous work demonstrated that effluent-derived mesothelial cells (MCs) from peritoneal dialysis patients show phenotypic changes, reminiscent of EMT, which are associated with the time of peritoneal dialysis treatment and with episodes of peritonitis or hemoperitoneum (Yanez-Mo et al, 2003). Cells that have undergone EMT acquire the capacity to produce extracellular matrix (ECM) components and a wide spectrum of inflammatory, fibrogenic and angiogenic factors. EMT is triggered by an interplay of extracellular signals, including components of the ECM, as well as soluble growth factors and cytokines, including members of the transforming growth factor (TGF)- and fibroblast growth factor families, epidermal growth factor and hepatocyte growth factor (Thiery et al, 2009)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.