Abstract

BackgroundOral squamous cell carcinoma (OSCC), a form of head and neck squamous cell carcinoma (HNSCC) has a poor 5-year survival rate. OSCC patients are often treated with cisplatin but resistance to chemotherapy is often observed. This makes it important identification of alternative therapeutic targets which will result in more favorable outcome in OSCC patients. The plant homeodomain (PHD)-containing protein Inhibitor of Growth family of tumor suppressor proteins (p33ING1b) has been indicated as a tumor suppressor in different cancers including OSCC. This protein has been shown to function by modulating transcriptional activity of p53; however, the exact mechanism(s) are not well defined.MethodsExpression of total and acetylated p53 and p33ING1b protein was determined in OSCC cell lines YD-9, YD-8, and YD-38 by immunoblot analysis. Effect of modulation of p33ING1b protein expression on acetylation of p53 and cell proliferation was determined by immunoblot and MTT assay. Effect of modulation of p33ING1b protein expression on transactivation of p53 was assessed by heterologous promoter-based reporter and chromatin immunoprecipitation. Effect of modulation of expression of p33ING1b on SIR2 mRNA and protein was determined by quantitative real-time PCR and immunoblot analyses. Impact of modulation of p33ING1b alone or in combination with SIR2 on chemosensitivity of YD-9 and YD-8 cells to cisplatin was determined in time and dose-dependent cell proliferation assays.ResultsHere, using a panel of OSCC cell lines with wild type or mutant p53, we show that p33ING1b expression is correlated to acetylation of p53 at lysine 382 residue. Increased acetylation of p53 following overexpression of p33ING1b was associated with increased expression of the pro-apoptotic proteins BAX, p21, and cleaved-Caspase 3, and decreased cell proliferation. Reporter assays with p21 and BAX promoters showed that p33ING1b expression levels directly correlated to promoter activity of these 2 genes. Chromatin immunoprecipitation assay showed that transcriptional regulation of p21 and BAX by acetylated p53 is dependent on expression level of p33ING1b. Differential acetylation of p53 following modulation of p33ING1b expression was indirect. Expression of p33ING1b was found to be inversely correlated to the NAD-dependent deacetylase silent information regulator 2 (SIR2). SIR2 was transcriptionally regulated by p33ING1b. Relative expression of p33ING1b was found to dictate chemosensitivity of OSCC cell lines to cisplatin treatment. Concomitant overexpression of p33ING1b and knockdown of SIR2 had a synergistic effect on chemosensitivity of OSCC cell lines to cisplatin, compared to either overexpression of p33ING1b or knockdown of SIR2 alone.ConclusionsThe results from the current study thus elucidate that p33ING1b regulates p53 acetylation irrespective of p53 mutation and subsequent transactivation by transcriptional regulation of SIR2 expression. The results also indicate that p33ING1b and SIR2 are potentially attractive therapeutic targets.

Highlights

  • Oral squamous cell carcinoma (OSCC), a form of head and neck squamous cell carcinoma (HNSCC) has a poor 5-year survival rate

  • In order to determine if there is a correlation between p53 mutation status, acetylation of p53 at lysine 382, and basal expression of p33ING1b, we initially determined protein expression of p33ING1b and p53 in the OSCC cell lines YD-9, YD-8 [tongue—point mutation at codon 273 of exon 8 of p53 (R273H)], and YD-38

  • We determined if the acetylation of p53 and transactivation of prop-apoptotic proteins Bax and p21 in the YD-9 and YD-8 cells was dependent on p33ING1b expression

Read more

Summary

Introduction

Oral squamous cell carcinoma (OSCC), a form of head and neck squamous cell carcinoma (HNSCC) has a poor 5-year survival rate. The plant homeodomain (PHD)-containing protein Inhibitor of Growth family of tumor suppressor proteins (p33ING1b) has been indicated as a tumor suppressor in different cancers including OSCC. This protein has been shown to function by modulating transcriptional activity of p53; the exact mechanism(s) are not well defined. Interaction of ING1b with H3K4Me3 and HDAC at the same time initiates DNA damage response signaling by causing local histone deacetylation and transcriptional inhibition It interacts with proliferating nuclear cell antigen (PCNA) and mediates pro-apoptotic signaling following genotoxic stress [6, 7]. P33ING1b overexpression has been shown to result in pro-apoptotic signaling [2, 8, 9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.