Abstract

In this study, we designed, synthesized, and characterized an A-D-A'-D-A-type indacenodithienothiophene (IDTT)-based molecular acceptor that exhibited a broader absorption range and higher lowest unoccupied molecular orbital energy level with a nearly comparable band gap compared to a well-known electron acceptor IT-M. The designed electron-deficient molecular acceptor FB-2IDTT-4Cl with a fluorinated benzene tether (FB), that is, p-tetrafluorophenylene divinylene, demonstrated long-wavelength absorption and high hole and electron charge mobility in the thin films blended with the electron donor PBDB-T for an inverted organic photovoltaic (OPV) binary device, resulting in a maximum power conversion efficiency (PCE) of 11.4%. Such a performance is comparably as high as that of the device with PBDB-T:IT-M, and particularly, it was 18.8% higher than that of the devices with ITIC-4Cl as the acceptor (PCE 9.1% ± 0.5%) and 24.9% higher than that of the devices with the thiophene-flanked benzothiadiazole-bridged acceptor CNDTBT-IDTT-FINCN (PCE 9.01% ± 0.13%). Furthermore, varying the illumination intensity from 200 to 2000 lux increased the Jsc and Voc values as well as the FF values, thus leading to increased PCE levels. In addition, the best PCE of the PM6:Y6 device with 1% FB-2IDTT-4Cl as additives was 16.9%. Our stability test showed that the PM6:Y6 standard device efficiency downgraded very soon either at room temperature or under thermal-annealing conditions. However, with the addition of 1% FB-2IDTT-4Cl as additives, the device efficiency still can be maintained at 90-95% in 500 h at room temperature and 95% at 20 h and 85-95% in 45 h at an annealing temperature of 80 °C. These findings demonstrate FB-2IDTT-4Cl to be a promising candidate as an electron acceptor with a fluorinated π-bridging fused-ring design for OPV applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.