Abstract

The kinetics of the P+HA- (oxidized donor, reduced bacteriopheophytin acceptor) recombination reaction was measured in a series of reaction center mutants of Rhodobacter sphaeroides with altered P/P+ midpoint potentials between 410 and 765 mV. The time constant for P+HA- recombination was found to range between 14 and 26 ns and was essentially independent of P/P+ midpoint potential. Previous work has shown that the time constant for initial electron transfer in these mutants at room temperature is also only weakly dependent on the P/P+ midpoint potential, ranging from about 2.5 ps to about 50 ps. These results, taken together, imply that heterogeneity in the P/P+ midpoint potential within the reaction center population is not likely the dominant cause of the substantial kinetic complexity observed in the decay of the excited singlet state of P on the picosecond to nanosecond time scale. In addition, the pathway of P+HA- decay appears to be direct or via P+BA- rather than proceeding back through P, even in the highest-potential mutant, as is evident from the fact that the rate of P+HA- recombination is unaltered by pushing P+HA- much closer to P in energy. Finally, the midpoint potential independence of the P+HA- recombination rate constant suggests that the slow rate of P+HA- recombination arises from an inherent limitation in the maximum rate of this process rather than because it occurs in the inverted region of a classical Marcus rate vs free energy curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.